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Abstract. The article presents a mathematical model that allows determining the main parameters of the plasma-
dynamic coolant jet in the process of thermal heating of the borehole inner surface. The mathematical model of low-
temperature plasma motion along the wellbore consists of the k-¢ turbulence model equations, the continuity and energy
equations for the gas flow, and the non-stationary heat conduction equation for calculating the temperature of a cylindri-
cal flange pipe, which models the rock mass around the borehole. The equations are written in a cylindrical coordinate
system for the radial and longitudinal components of the velocity of a low-temperature plasma flow. The differential equa-
tions of the mathematical model were supplemented with the corresponding initial and boundary conditions. The initial
conditions were the known gas temperatures in the borehole and the initial temperature of the cylindrical flange pipe.
The boundary conditions, in addition to the corresponding relations for the turbulence model, were the known parame-
ters of the plasma flow at the inlet to the cylindrical pipe and the conditions for stabilization of the flow at the outlet. No-
slip conditions for the flow and boundary conditions of the third order for the energy equation and the heat equation were
used on the fixed boundary of the flanged pipe. To calculate the equations of the mathematical model, the numerical
finite element method was used. The adequacy of the model of the borehole heating process by the plasma flow was
verified by comparing the numerical calculation with experimental data. Experimental data confirm the adequacy of the
proposed mathematical model. The difference between numerical and experimental data does not exceed 4.1%. The
proposed mathematical model can be used to calculate the temperature of the inner surface of the borehole before it is
chipped during heating.

Keywords: mathematical model, borehole, low temperature plasma flow, pipe heating.

Introduction. A problem of mathematical modeling of the process of the rock spalla-
tion reaming is urgent as well and it is described in several publications [1-3].

The latest domestic experimental and theoretical researches of the problems of
crystalline structures destruction by plasma are known [4, 5].

Possibilities of analytical determination of optimal parameters of thermal influ-
ence on rocks are limited by solution of thermoelasticity equations and contact tasks
of durability theory.

Such a task formulation is unacceptable due to complication of taking into ac-
count of substantial change of physical and thermophysical rock properties in the
processes of its heating and mechanical loading.

Due to an existence of fundamental differences among the results of the known
publications and limitations of investigational parameters of heat transfer medium
that interacts with the borehole surface, it is obvious necessity of mathematical model
development that allows to define basic plasmadynamic jet parameters of heat trans-
fer medium in the process of borehole thermal heating.

Methods. Mathematical model of the plasma motion along the borehole consists
of the k-¢ turbulence model equations as follows [6, 7]:
- equations of plasma motion and continuity equation:
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- equations for turbulence kinetic energy and turbulence kinetic energy dissipa-
tion rate:
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where pp — plasma density; U, and Uy — velocity components; p, — plasma dynamic
viscosity; P, — plasma pressure; k — turbulence kinetic energy; € — turbulence Kinetic
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energy dissipation rate.
Constants in equations (4)-(7) are as follows: C,=0.09, C,=1.44, C,,=1.92,

ox =1, 0.=1.3.

Governing equation of the heat transfer between plasma flow and internal surface
of the flanged branch pipe is as follows:

aTpl_l_8(Ux:0plcpl-|-pl)_|_a(rurlaplcpl-l-pl): 0 [Mm aTm] 8 [ 5T J(S)

c
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Governing equation of heat conduction in the flanged branch pipe is as follows:
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where cp and cq, — specific heat capacity of plasma and material of the flanged branch
pipe respectively; T, and Ty, — temperature of plasma and material of the flanged
branch pipe respectively; A, and A — thermal conductivity coefficient of plasma and
material of the flanged branch pipe respectively.

Initial conditions:
- initial temperature of the medium inside the flanged branch pipe

T =303 K;

pl 7=0
- initial temperature of the flanged branch pipe beL_O =303 K.

Boundary conditions for this problem are as follows (see Figure 1):
Axial symmetry boundary conditions are defined for boundary 1 [8]:
- for equations (1)-(3):

oU
—=0; 10
n (10)
- for equation (5) and equation (6):
ok
= =0, 11
P (11)
o€
—=0; 12
n (12)

- for equation (8):
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Figure 1 — Boundary conditions

For boundary 2:

- for equations (1)-(3) at the inlet of the flanged branch pipe for the plasma flow
velocity components for r and x directions (U, and U,) as well as static pressure P are
defined [9];

- for equation (5) and equation (6):

k==(Uy 1) (14)

N w

c075 |15
€= ﬂl— , (15)
t

where |; — turbulent length scale, that is defined as follows: I; =0.07-d ¢,; I — turbu-

lence intensity, that equals 5 %; where dg, — diameter of the flanged branch pipe;
- for equation (8) at the inlet of the flanged branch pipe the plasma flow tempera-
ture is defined Tj.
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For boundary 7:

- for equations (1)-(3) at the outlet of the flanged branch pipe for the plasma flow
static pressure P that equals to the atmospheric pressure is defined [9];

- for equation (5) and equation (6):

2 -o; (16)

% _o: a7
- for equation (8):

OT p)

For boundary 3 and boundary 8:
- for equations (1)-(3):

< —o; (19)

vh=lin[Ow]ct (20)
K I

where x — the Karman’s constant, that equals x=0.42; C* — a universal constant for
smooth walls, that equals C*'=5.5; 0,, — distance from the wall (from the boundary

8); I” — the viscous length scale, that is defined as follows [8]:
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- for equation (5) and equation (6):
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- for equation (8):
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where g, — the emissivity coefficient; oo, — Stefan-Boltzmann constant; ag, — heat
transfer coefficient from the plasma to the flanged branch pipe internal surface;

For boundaries 4, 5 and 6:

- for equation (9):
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- fb'ﬁ—aamb‘ fo — lamb/s (26)

where a,mp — heat transfer coefficient from internal surface of the flanged branch pipe
to ambient air; T, — temperature of ambient air.

For boundary 8:

- for equation (9):

oT b

_ﬂfb'a—n:‘gpf 'GO'(TSI_T?b)"'afb'(TpI_be)- (27)

Equations (1)-(3), (5), (6), (8), (9) were solved via Galerkin method based on the
finite element method. The triangular finite element discretization of the domain was
carried out.

System of equations of the standard form is written [10, 11]:

[K]-{@}+{F}=0, (28)

where [K] — matrix of the shape functions for all nodes of the finite elements; {®} —
matrix of the functions that should be defined for all nodes of the two-dimensional
domain; {F} — matrix that comprises forces per unit volume of the plasma flow as
well as boundary conditions.

Matrix could contain an integral of the volume forces as well as boundary condi-
tions.

Results and discussion. Model adequacy checking of the borehole heating pro-
cess by means of the plasma flow was made by comparison of the numerical calcula-
tion with experimental data. Experimental study technique was described in pa-
per [12].



158  ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) I'eorexniuna mexanika. 2022. Ne 160

Comparison of the temperature of the inner surface of the flanged branch pipe is
shown in Figure 2.
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Figure 2 — Comparison of the temperature of the inner surface of the flanged branch pipe

Experimental data confirm an adequacy of the proposed mathematical model. The
difference between numerical and experimental data does not exceed 4.1 %.

Conclusion. The proposed mathematical model could be used for calculation of
the temperature of the borehole inner surface prior to its spallation during the heating
process.
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MATEMATUYHE MOJENOBAHHA MNPOLIECY HArPIBAHHA CBEPAJIOBUHW 3A OOMNOMOIOK
AKCIANIbHOI O MIA3SMOTPOHY
Xeexuk O.B., Nomandyyk I.FO., €EmenbsHeHKko B.1., Cekap M., lNepuyesut B.O.

AHoTauif. Y ctaTTi HaBeeHO MaTeMaTU4YHy MOJenb, Sika [03BOMNSE BU3HAYUTM OCHOBHI NapameTpy nnasmoau-
HaMiYHOro0 NOTOKY TEMNOHOCIS Y NpOoLeci TENNOBOro HarpiBaHHs BHYTPILHLOI NOBEPXHI cBepaAnoBuHU. MatemaTnyHa
MOAENb PYXy HWU3bKOTEMMNEepaTypHOI Nna3mu B3LOBX OTBOPY CBEPASIOBMHW CKNAAaeThCs 3 PiBHSHb k-€ Moaeni TypOy-
NEHTHOCTI, PIBHAHHA HEPO3PUBHOCTI Ta EHEprii Ang ra3oBoro NOTOKY Ta HECTALiOHAPHOTO PIBHSAHHSA TENNOMpOBiAHOCTI
QNS po3paxyHKy TemnepaTypu LuniHapuiHoro cnaHuesoro natpybka, Sk MOAENIOE TipCbKWA MacvB HABKOMO CBEPA-
NOBWHW. PiBHSIHHS 3anKCaHi B LMNIHAPWYHIA CUCTEMI KOOPAMHAT ANS paaianbHOl Ta NO3A0BXKHLOI CKNadoBOol LWBWAKOCTI
HU3bKOTEMNEPATYPHOMO NNa3MOBOro NOTOKY Nia3mu. JutepeHLianbHi piBHAHHA MaTEMATUYHOI MOZESi AOMNOBHIOBANMCS
BiANOBIgHMMM NOYATKOBMMM Ta rPaHUYHAMM yMOBaMK. [louaTkoBuMM ymoBamu Bynu Bigomi Temnepatypy rasy B CBepa-
NOBMHI Ta MovaTkoBa TemnepaTtypa (hnaHUeBoro LMMiHAPUYHOrO naTpybka. MpaHMYHUMK YMOBaMM, KM BigMOBIAHMX
cniBBigHOWeEHb Mogeni TypOyneHTHOCT, Bynu BigoMi napameTpu NNa3MoBOrO NOTOKY Ha BXOAI B LMMIHAPUYHWA naTpy-
Ook i ymoBu cTabinisalii noToky Ha Buxogi. Ha Hepyxomiit Mexi dnaHLeBoro natpybka BUKOPUCTOBYBANMCS YMOBM Mpi-
NWNaHHA 419 NOTOKY Ta rpaHuyHi YMOBW TPETLOTO POAY AN PIBHAHHS eHEpril Ta PiBHAHHA TennonposigHocTi. [ns pos-
PaxyHKy piBHsIHb MaTeMaTU4HOI MOJENi BUKOPUCTOBYBABCS YMCENbHUA METOA KiHLEBUX enemeHTiB. MepeBipka ageksa-
THOCTi MOAENi NPOLECY HarpiBaHHs CBEPANOBUHM NOTOKOM NNa3mu NPOBOAMNACS LUSISIXOM NOPIBHSHHS YUCENBHOrO po3-
paxyHKy ekcrnepuMeHTanbHUMK AaHUMK. EkcnepuMeHTanbHi AaHi NiaTBEpIKYIOTh afeKBaTHICTb 3anponoHOBaHOT MaTe-
MaTU4HOI Mogeni. Pi3HNLA Mix YncenbHUMM Ta ekcrepuMeHTanbHUMK aaHumy He nepesuiye 4,1 %. 3anponoHoBaHa
MaTemaTiyHa Mogenb Moxe 6yTi BUKOpUCTaHa Ans pO3paxyHKy TemnepaTypu BHYTPILUHBOI MOBEPXHI CBEPANOBUHM [0
il CKOMNKBaHHS B NPOLEC HarpiBaHHs.

KnrovoBi cnoBa: MatemaTyHa MOAENb, CBEPANIOBMHA, NMOTIK HU3bKOTEMMNEPATYPHOI NNa3Mu, HarpiBaHHa naTpyoka.
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